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PREFACE

This report is submitted as partial fulfillment of the requirements of
IITR! Statement of Work 277RAC (June 10, 1077), which is part of a larger
program whose ultimate goal is to provide Rome Air Force Development
Center (RADC), RBRM Section, with state-of-the-art computer aids for
identifying the locations of faults in large-scale integrated (LSI) chips,
and to assist in the writing of MIL-M-38510 slash sheets. The techniques
were to be adapted for the RADC Tektronix 83260 Tester.

The most significant tasks of this 377TRAC project were 1) training of
‘RADC/RBRM personnel in the use of Digitest Corporation's DLASAR, Version 4,
(D4LASAR) an automated test generation system and 2) development of an ISO
package and installation on the RADC 83260 tester. ISO will accept tape files
from the DALASAR system and, using test data from the 83260, provide fault
isolation analysis for the chip under test.

The training course on D4LASAR was primarily a series of lectures based
on the Digitest Corp. users' manual combined with hand's-on experience using
the G E. DALASAR system in Syracuse, N.Y, It was preceded by discussion
of the technical background underlying D4LASAR and testing in general, This
report essentially covers the technical background material with the intent of
easing the initiation of future users of D4LASAR.,
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EVALUATION

The objective of this effort was to investigate and apply structural 1
and functional test generation techniques to LSI circuits. Both fault i 8
detection and isolation testing are of interest, the former in support of | B
RADC TPO R5B and MIL-M-38510, General Specification for Microcircuits, and |
the Tatter in support of RADC's microcircuit fajlure analysis work. Both [
areas stand to banefit greatly from the application of computer-aided test 1
generation as the level of integration continues to increase in digital
microcircuits.

This report provides an introduction to the D4LASAR structural test
generation system. Althou?h D4LASAR was originally designed for printed
circuit board testing, it is being successfully applied to LSI microcircuits. |
The material contained in this report will result in more intelligent appli- |- ]
cation of DALASAR to LSI testing and also serves to illustrate many of the 1T
gengral problems and processes involved in any automatic LSI test generation
systems.

12&2&46¢e4”¢x53¢zu421;. ]
MICHAEL G. LAVELLE, CAPT, USAF g

Solid State Applications Section )
Reliability Branch f
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I. INTRODUCTION

Most of the material presented here is intended as an introduction to
D4LASAR theory. D4LASAR is a proprietary system whose detailed operation
has not been disclosed by Digitest Corp, thus, some descriptions here refer
to the way a job might be done rather than the manner in which D4LASAR
actually does it.  To reduce confusion iteration is employed. First, the
D4LASAR structure and capability are outlined. Then background requirements
for testing digital devices are discussed. This is followed by a further dis-
cussion of D4LASAR's application to testing, including some options. Then
19 the operation of major analytic program modules is described and their
AR limitations-are discussed. Finally, the strengths and weaknesses of DALASAR

are discussed along with desirable evolutions and alternative approaches to
test problems.
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II. GENERAL DESCRIPTION OF D4LASAR

D4LASAR stands for Digitest Version 4 Logic Automated Stimulus And
Respunse. Lt is a software system that executes on a dedicated SMC-3100
Ey midi-computer for hands-on batch processing. There is also an adaptation
L that executes on the Univac 1100 computers of University Computing Corp.

' for time-shared service.

¥ D4ALASAR accepts a card-deck description of a digital device, generates
o a set of test vectors for it, evaluates the fault coverage, and provides a
‘ fault-dictionary printout. Manually inputted test sets may also be used,

There are seven basic subsystems plus an overriding executive sub- ,
system and a manual-entry subsystem. The names of these subsystems A
should be memorized by the reader since they are referenced frequently.

Figure 1 shows a typical activity flow.

Major Subsystems

INPUT This subsystem converts user description of the de- ' ‘
vice to be tested into the files required by D4LASAR. 1

E STIMGN This subsystem selects stimuli (test-input vector v %
2 sequences) which will detect faults. These stimuli are

' usually not completely specified, i.e., they will contain ' ?
don't-care values.

A

OVRLAY This subsystem combines test sets from STIMGN by
overlaying don't-care values with specified values. h

SIMUL This is a logic simulator that computes the fault-
free output values for each test input vector. It also provides :
an analysis of races and hazards. Further, it attempts to ]
eliminate these timing problems by inserting new "buffer" ‘
patterns between test vectors so that fewer input bits change ;
at any one time. Failing to achieve total "deracing”, it marks i
each affected output as a don't know. '

DYSOGN This subsystem accepts the SIMUL files and provides
a fault simulation. It also provides a very limited race-after- B
fault analysis. ;

REDUCE This subsystem accepts DYSOGN files, discards '
unnecessary test responses, and generates a three-part fault
dictionary.

IS0 This subsystem accepts REDUCE files and test-station B
failed-device data and provides fault-isolation information. '

. T e
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ALEC This acronym stands for Automatic Laser Executive
Control. This executive module simplifies the use of DALASAR
by automatically providing many of the required job controls.
ALEC also forces STIMGN, OVRLAY, SIMUL, and DYSOGN to
execute in iterative cycles which considerably improve the elfi-
ciency of the process,

TECQ This subsystem provides direct user control of

e test-Input vectors, macro generation of inputs, and edit -
ing of input vector streams. It usually drives SIMUL, and -
it can be preceded or followed by a STIMGN-OVRLAY-SIMUL-

DYSOGN cycle. i

Typical Usage of D4LASAR

S Figure 1 diagrams the typical control flow through the major subsys-
tems of DALASAR. The system selects test exercises for digital devices but oo
does no actual testing; a separate tester is required for that. The network s
to be tested must be modeled as an interconnected assembly of hardware
T modules, and the inodules must consist of gates or assemblies of gates. The
: . Component Library contains 14 basic functions such as NAND, AND, wired
AND, two-NAND LATCH, JK, RS, and D flip-flops, and MOS transmission AN
R gates. The Library also contains models for more than 500 TTL devices A
plus some devices of other IC technologies. However the user may specify i
a network model, INPUT will transiate it into an equivalent NAND network i :
for subsequent operations, Sypecial control cards are required to designate ;
which network nodes are accessible inputs and which are observable outputs.
Two-way tri-state terminals require special modeling, which is discussed

';,T . later, o

4
| | 1.
1 STIMGN is a "back tracing" program that assigns a value to one selected i i
} output, then proceeds "backwards", i.e., opposite to signal flow, while assign- i
ing input values to gates to achieve local test objectives. A test will be a ]
sequence of external-input values which cause a logically cousistent set of
L internal gate-input values such that the existence of a specific failure mode will
: be detectable at the selected output. Usually many of the external inputs have ,
' don't-care values. Cross-coupled NAND latches are identified automatieally and o
the sequential nature of each latch is recognized, Howeves, STIMGN has no s
fe ability to account for asynchronous circuit delays. Combinationa of latch »
o , values which STIMGN seeks to obtain, but which give rise to logical inconsistencies, A
b ‘ are icentified as "illegals". Latches composed of more than two NANDS are '
i : usually algo identified as illegals. Encounter with an illegal causes STIMGN
F { to discontinue its current search and to go to the next test objective. STIMGN
I

e

3% A

stops when a time limit has been exceeded or when it attains its current goal
. in terms of percent detected faults, STIMGN has an unreal view of the network
‘ 80 it may have actually accomplished more or lessthan it thinks it has achieved.
: DYSOGN will be the final arbiter of fault coverage.

f%

| A Each STIMGN test is independent of the rest in that each backtrace begins

; with a unique local test objective, and STIMGN develops, where it can, the initial
v - test conditions for that test objective. Tt is not possible for the user to specify
either an initial memory state or an initial input state. The user can specify
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OVRLAY
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( PERCENT )
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l Test Data
'
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Figure 1. Typical D4LASAR Fiow
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"illegal"combinations of nstwork nodes, but these forbidden combinations
remain invariant throughout the D4LASAR execution.

OVRLAY takes the most recent set of tests spawned by STIMGN and merges
gequences of vectors where there i8 no zero-one conflict in any pair of corre-
sponding bits, This reduces the number of teat sets by exercising more signal
paths in parallei than STIMGN could account for. In the process, many don't-

. care input bits ire assigned preceding or following STIMGN values, All re-
§ malning don't care bits are assigned in a way that tends to preclude races

! and hazards. The final output of OVRLAY {8 a list of binary vectors that still
conatitutes a sequence of independent test sets as ordered by STIMGN, but for
which there remains no distinction as to where intermediate STIMGN tests
begin or end,

Cne

RN P W 35S
R

SIMUL applies the vector sequence from OVRLAY to the NAND model of
the network. This model is essentially that of the user, and it is also used by
DYSOGN. For sequential networks it may be necessary to provide 3STIMGN
with a somewhat differen. model to work around STIMGN's inability to account
for gate delays.

oren oy iy

SIMUL's primary task is to compute the fault-free responses of the net -
a work to the applied input sequence. The simulation executes as though all bit

values of each test-input vector are applied simultaneously, which is typical
of a test fixture, This does not distinguish between pulse lines and levels and
does not permit simple representation of time-staggered inputs as may occur
when evaluating part of an assembly of gates,

|
|
!
t The simulation proceeds as though all nodal activity reaches steady
: state before the next external input vector isapplied. Thus, an external

Vo vector is applied (symbolically) by SIMUL to the nodes designated as external
3 ‘ inputs. The output of each gate driven by an external input is computed to be
.

*

a 0, 1, or X where X stands for don't know. All such gates are processed as
one episodic event. A list is formed of those gates that are driven by a gate
whose output has changed. When all input gates are processed, the change-
list gates are processed, and a new change list is formed. Usually, logical
actlvity will cease, and this is indicated when the next chainge list is empty.
Continuous cycles are possible, and these may be automatically detected by
the count of consecutive changes of each node,

o

e

o The next input vector is applied when prior activity has ceased or a
S cycle has been detected. Each transition from old to new change list corre-
o sponds to a "unit" or "gate" delay. D4LASAR refers to this delay as 10 ns
: i - (nanoseconds), which is an arbitrary designation since the real gate delay l
AL could be any single value without affecting the meaning of the analysis. There Lo
. is no provision for assignable delays, different gate delays (e.g., when both oo
o TTL and ECL devices are used) nor different rise and fall times., NAND- :

’ equivalent modeling in DLASAR assigns one delay per NAND, two delays per
AND, OR, WIRED AND, and three delays per NOR. The only way to achleve
the equivalent of assignable delays is to use multiple serial inverters, but
this increases the running time and could cause the upper gate-count limit to
be exceeded for DYSOGN, which uses SIMUL's model files,
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SIMUL also provides checks on timing malfunction, both nominal and
worst case, In worst-case delay analysis, convergent paths are examined for
the consequences of one path at maximum accumulated delay and the other at
least delay, where each gate has one delay plus or minus a selectable fraction.
This includes the worst-case skew of the inputs. If one of these conditions
could result in a latch being incorrectly sct, then SIMUL will attempt to
avold the problem by adding "buffer" input vectors, which reduce the number
of variables changing between successive inputs, It is possible to add enough
buffer vectors to assure that only one Input variable changes at a time, If
the network has been designed to avoid races and hazards by clocking all
latches, then the addition of huffer inputs should succeed. However, paths
of unequal delay, which fan out and reconverge, cannot be compensated in all
cuses with buffered inputs. When "derace" {8 not successful, the affected
outputs are marked with X as don't-knows and are disregarded thereafter.

SIMUL also has the capability to simulate single or multiple-fault
conditions, but it simulates only one condition at a time. DYSOGN is much
faster for fault simulation because it simulates many fault conditions simul-
taneously, However, only single "stuck-at" faults and shorts between adjacent
pins of ICs or other equivalent modules are accounted in each condition,

In an ALEC-controlled iteration, REDUCE is used to discard vnnecessary
DYSOGN output. The final pass through REDUCE produces a failure dictionary.
These data, along with the test sets, are stored on magnetic tape for use in
testers,

For Tektronix 83260 testers, the taped data will permit ISO to provide
automatic fault lsolation using real failure data from the unit under test,

TECO permits the use of manually generated test sets and also provides
macros for generating four different kinds of vector sequences. It also permits
deletion, addition and rearranging of test-veotor sequences. With appropriate
job control cards, TECO activity can precede or follow ALEC iterations.
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. REQUIREMENTS FOR TESTING

An error is a result of incorrect performance. In this discussion, a
fault is a hardware condition that is capable of producing errors. The existence
o of a fault in digital hardware is detected only by observation of the errors
SRS caused by the fault.

Failure Modes And Effects

Essentlally all techniques for detection and diagnosis of faults in digital
electronics depend upon analysis of the errors caused by faults. Infrared
pattern monitoring, for example, has not proved to be sufficiently useful.
Prediction of incipient failures through over-stress or marginal performance
testing has never been sufficient for testing assemblies of solid-state digital
devices. The design of automated fault detection and diagnostic procedures
requires 1) prediction of the kinds of faults that may occur, 2) an estimate
of their likelihood (some must be ignored), and 3) determination of the circuit
behavior in the presence of each fault

E SEbai R

Most test procedures are based on the assumptions that 1) once a fault
occurs, it will persist until it is repaired, and 2) circuit behavior in the
presence of each fault will be logical. The evidence published to date
indicates that this latter assumption has been true for most faults in all state-
of-the-art digital systems of the last, say, ten years. However, intermittent
faults do occur, and some steady faults cause inconsistent errors (notably
faults resulting in hazards or marginal timing). These (apparently) minority
faults tend to require considerably more time to diagnose than the consistent
majority because they require repetitive testing and will cause deterministic
dictionaries to yield incorrect fault identification. The timing analysis of
SIMUL can account for many of the timing problems under test conditions.
However, D4LASAR provides nothing to help with intermittent errors due to
chip defects, such as pinholes, marginal bridging between runs, undercutting
or poor contacts., For these, the analyst may have to interact with D4LASAR
and/or provide specizlized test procedures,

Basic Requirements

1. The operation of the specimen machine must be definable in the
absence of faults. (One cannot predict the consequence of a test
performed on an unspecified black box.)

2. Sampled machine responses to test exercises must be consistently
readable. (The machine must either halt to provide readout
or must be synchronously sampled at an identifiable time.)

3. Todifferentiate any two faults (hence, to differentiate their
locations), a test sequence must evoke a difference in at least
one bit of the observable outputs when either one, but not both,
of the faults exist.
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4. Exercising and sampling a specimen tnachine must not cause
a failure to occur. (E.g., testing shall not cause damage to
circuits, nor cause erratic behavior due to loading, nor
introduce significant noise.)

v
t
{
{
!

[4,]

To compute the output sequence of a recursive function for an
arbitrary input sequence, its internal state must be determined.
(E.g., if the input to a J-K flipflop is JKC = 1 followed by

C = 0, then the next output equals the last output. The next
output is known only if the last output is known, Or consider
the input sequence JKC = 1 followed bv C = 0. The next output
is changed if no fault exists butwhether the output sequence

is 0,1 or 1,0 depends upon the initial output value.)

Automated testing with predetermined input-vector sequences requires that
specimen hardware containing memory be initialized to a predetermined state.
Then a sequence nf one or more preselected binary vectors is applied to the N
data and control inputs of the hardware. The hardware is exercised for a pre- '
determined number of clock times; then the output is sampled. The observable
results are compared with a precomputed set of values, which are the results
expected of a fanlt-free machine. Observation of mismatch constitutes
o error detection. If no error is detected for a given test exercise, then either E
. no fault existed during that test, or the test did not exercise the fault in a -
manner that would produce an obsarvable error. Wl

FRENE SN S ST
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: Typically a set of tests is selected with a capability for detecting a

i . large fraction of the stuck-at-one and stuck-at-zero faults. It is preferable 'S
1 that each test meet the requirements of the foregoing paragraph (i.e., a set '
| .
|

of independent tests), Some memory (flipflops, registers, RAMs and ROMs)
1 will be directly accessible through normal operational data and control paths,
N and such memories may be tested independently of other hardware. Memory
1 buried in logic must be initialized either through a "homing" sequence of
inputs that will normally result in a selected initial state, or the memory is 1
initialized directly through special test paths Installed for that purpose. :
’ Provision for loading arbitrary initial values into recursive memory contributes ]
l significantly to shorter test sequences and easier selection of the test sequences. 1

. Fault Location A j
Fault location has two requirements:

) 1. TIdentify which fault or fault set exists .
! 2., Identify the module which contains the fault l o

1 The latter task (2) is a straightforward bookkeeping task after task (1) has
o been accomplished and fault sets have been correlated with physical layout. i

T Three different approaches to fault location are identified. The first is to
S provide a means of injecting test vectors and retrieving test results at the level
P of a replaceable unit. Thus, each replaceable unit could be tested independently
of ather units and its health ascertained from the test results Fault detection
congtitutes fault location in this case, This approach tends to require much
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redundant hardware or requires the bed-of-nails approach to provide the
necessary test access on boards. On whole chips it is just GC/NO-GO
testing and is meaningless for fault isolation within the chip.

The second approach is a substitution technique. In its simplest form,
a string of replaceable units is tested as a string. If an error is detected, each
unit is replaced, one at 2 time, with an equivalent unit and the test is repeated.
When the errors vanish, the last replaced unit is the suspect one. At the chip
levels this approach requires a redundant reconfigurable chip design, which
has been used for improving yield but not for on-chip fault location.

Guided-probe testing is essentially a variation of these two approaches
when spare units are not available. A string of units may be tested as in the
second approach. When a fault is detected, skip the last unit, monitor the
output of the second last unit and repeat the test. If no error is detected the
last unit is suspect; otherwise it is not, and the procedure may be repeated
for the second to last unit, etc. Typically this approach is not desirable
because the fault-free responses of each unit would be different, and because
mechanized probing of the hardware is required. The latter requirement is
likely to rule out dependence upon guided probing of LSI chips.

The third and most used fault-location technique utilizes error patterns
for fault differentiatiation. To uniquely identify the existence of a particular
fault it is necessary to execute a test sequence such that the response of the
specimen machine with that fault will be different, in at least one bit, from the
responses that would be obtained from the same test sequence with every other
fault. In the stored-test approach, a directory is usually provided which lists
the possible fault responses and identifies the corresponding faults that may
cause each fault response. Correlation of test, fault, and response is
determined by either programmed simulation of the faults or by insertion of
single faults in operational equipment. Insertion of large numbers of single
faults is impractical on chips, but fault simulation is entirely feasible.

The stored deterministic test approach to fault location is particularly
appropriate when 1) the chip is modelled at the gate level and 2) the test-
generation and fault simulation software is not overwhelmed by the chip
complexity. When both of the conditions hold, D4LASAR will be very useful.

If the second condition does not hold, then the chip function may be partitioned,

and a combination of D4LASAR analysis and functional analysis may be used.
If the first condition does not hold, then D4LASAR cannot be used, and
surrogate techniques must be employed. Such alternative approaches are
discussed in depth in Reference 7.
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IV. D4LASAR FAILURE MODES

D4LASAR's DYSOGN module can simulate any one of the following three
fault conditions:

1. Single stuck-at gate fault in real time
2. Single IC pin stuck at one or zero in real time

3. Single pair of adjacent IC pins shorted

In any one pass through DYSOGN, a multiplicity of single-fault condi-
tions are simulated,

Figure 2 shows a two-input DTL NAND to {llustrate stuck-at-gexo (SAO)
faults, The trangistor could fail shorted from collector to emitter (SAO) or fail

open. When driving a similar eircuit with base pull up, the failed-open
condition would be equivalent to an 8A1. The condition of any one input diode

+ Neltataiaaile
+ |

Figure 2, DTL NAND

open is functionally equivalent to that node SA1, Consider the four possible
input combinations: AB = 11, 10, 01, 00. AB = 11 implies C = 0 so that

C is tested for SA1. Either i{nput open could not be detected, although either
A SAO or B SAO could be detected.~AB = 10 implies C = 1 8o C SAO and

B SA1 are detectable. AB = 01 makes A SA1 and C SAQO detectable. AB = 00
detects C SAO but detects nothing that is not detected by other vectors. Thus,
three input combinations constitute a necessary and sufficient test set for a
single two-input NAND. For N iuputs, N+1 combinations are required.

Appendix A offers an example showing how the major D4ALASAR modules
work with stuck-at failures,
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V. STIMULUS GENERATION

Methods for selecting tests for digital networks fall in the following
catagories:

1. Quasi-exhaustive
2. Pseudo-random
3. Functional

4. Deterministic

5. Nonsystematic (Manual)

The following discussion is primarily almed at "random" logie, implying
an exclusion of RAM and ROM, which are well ordered arrays Memory array
teating is dominated by tests designed for detection of pattern sensitivity due
to possible non-obvious internal crogs-talk problems. The test designed for
"random" arithmetic and control logic typically neglect pattern sensitivity.

In some cases this may be a mistake, particularly with embedded RAMs and
ROMs.

Quasi -Exhaustive Testing

If a device is entirely combinatorial, then it may be possible to generate
all input combinations in a subjectively short time using a binary counter as the
vector generator, Comparison of duplicate devices will obviate the need to
compute the expected response for each vector, hence will permit full -speed
test execution, Such exhaustive testing does not require fault simulation to
prove that fault coverage is 100 percent.

If the device has recursive functions, then it is possible that necessary
vector sequences will not occur in the counter-driven sequence, Fault
simulation would be required to identify untested faults so the test sequence
could be intelligently modified, The cost of fault simulation may significantly
restrict the number of input variables that could be analyzed in exhaustive
testing of recursive functions, as compared to the testing of strictly combinatorial
functions,

The term quasi-exhaustive implies recognition of iterative structures in
the logic that can be tested identically in parallel. Thus, the iterated parts
are tested exhaustively in parallel, but all combinations of all input variables
are not employed. Non-iterative functions such as carry lookahead will re-
quire specialized attention.




Pseudo-Random Testing

The intent and approach of pseudo-random testing is essentially the same
as exhaustive testing, except that a smull subset of all input combinations is
employed, The results are checked either by comparison with the output of
a duplicate process or with a computed (simulated) output. It is a Monte-Carlo
approach that is blind to logic structure. Many careful analyses of fault coverage
achieved by pseudo-random testing of specific logic networks have shown that
it sometimes provides good coverage but usually does not, That is, the easily R
tested paths tend to be tested excessively while obscure paths tend to be missed. o
Lack of detailed structure precludes fault-coverage statistics.

Functional Testing

Functional testing is intended to limit test inputs to a set that exercises
each specified system function once. The hope is that comprehensive fault
coverage can be achieved with a nearly minimal test set, but without recourse
to definition of actual logic structure. Where analyzed after the fact with full
knowledge of the logic structure, seemingly complete functional testing usually
has fallen far short of comprehensive fault coverage. This is typically due to
1) data-dependent altexrnative paths for individual functions and 2) the need for
speclalized vector sequences to test recursive functions.
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The companion report (reference 7) provided by GEOS goes much more
deeply into functional-test approaches,

Deterministic Testing

Deterministic testing begins with a definition of a set of failure modes,
foliowed by selection of a test for each failure mode. The final number of
tests is considerably smaller than the number of tested failure modes because
signal paths are activated in parallel and multiple failure modes are detectable
in the concatenation of circuits that compose each testcd signal path.

e b LRl gk, A 2 R Wl T

Most automated procedures for testing digital devices, other than large
memorles, are designed to detect stuck-at faults. Fault isolation is obtained A
via redundant fault-detection tests (i.e., a test set that provides for multiple
detections of the failure modes). Detection of shorted adjacent integrated .
circuit pins usually I8 accomplished with a test set derived for stuck-at faults. ?

anslDaR el | T

Two requirements must be satisfied for detection of a fault: 1) external
inputs and the internal memory variables must provide a local input to the
falled device such that an output of the device will be erroneous when the fault
exists, and 2) the device output error must propagate so as to be observable at
an external output. The signal path from a detectable fault to an observable
output usually will also permit detection of faults on intermediate devices
Such a path is said to be "sensitive" (1) and may extend from external input to
external output. In the presence of reconvergent fanout, a signal path may have
sensitive and insensitive segments at the same time,
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; The best deterministic test results have been obtained with gate models
; of digital networks. The advantages of gate models derive from the fine
{ structure of the modelling. The chief disadvantages are 1) long execution
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time of automated test-generation and fault-simulation procedures and 2) in-
creasing incidence of non-disclosure of integrated circuit gate models. Use of
grosser models, such as a functional description of a MSI or LSI chip, tend to
relieve these two disadvantages but incur the risk of inadequate fault coverage,
increased likelihood of incorrect fault isolation, and inadequate timing analysis.

Nonsystematic Testing

Any test exercise, however obtained, will accompligh something. Given
the existence of a non-void test set, the next test to be selected should contribute

additonal fault coverage. This objective can be assured only if there exists a f
means of detearmining what has been achieved by the existing test set and what w
would be achieved by a proposed additional teat, Such a means implies ';5

1) the existence of a definition of failure modes, 2)a logical-network structure
of sufficient detail and 3) a practical means of evaluating failure-mode coverage x‘
(e.g., a fault-simulation program). The implication ia that nonsystematic
nonexhaustive testing cannot offer assurance of adequate fault coverage.

For these networks containing a central processor, RAM, or other

N function, which is intended to assist the execution of the testing (l.e., a ;
- partially self-testing network), it often appears wise to test the simplest and [
1 shortest data and control paths first, then work into the more complex or g
P obscure logical functions. Such intuitive approaches may offer an advantage
| such as improved ordering of tests, but their alleged advantages may be y
, illusory and may prove unnecessary where systematic analytic approaches are ;
. employed. 3

u}

; Categories of Deterministic Test Generation Programs

[ IO

T A review of past and present determinisitic test-generation programs s N
well beyond the scope of this report. However, there may be value in noting )

oo the following. All of these programs are intended to be, essentially, automatic N

S and are most valuable for testing sequential functions. It is necessary to 4

o compute local functional (e.g., gate) values in both forward (input -to-output) R

ik and backward directions. Accounting for timing in a sequential machine gives
Foo rige to problems of significant difficulty. Most (perha% all) test generation
programs take advantage of the Huffman-Mealy model by representing oo
i any digital sequential machine as an interconnection of two disjoint functions: 'f '*3
i 1) all memory elements and 2) all combinatorial logic. The approach taken, T
whether computing forward or backward, is to alternately, not simultaneously, oy
compute the memory and combinatorial functional values. S
!

Difficulties presented by timing representation include 1) nominal effects i
such as pulse representation, signal time order, nominal races and cycles
and 2) worst-case effects such as unintentional pulse (spike) generation, races Vo
and hazards, and mal-ordering of signals.

The first test -generation programs provided zero-delay models without
recognition of memory elements so the user had to identify all memory elements
and the way they performed. These programs were put to good use, but they
were Inconvenient and sometimes ylelded incorrect results due either to in-
adequate flip-flop models or lack of identification nf memory elements created
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by cross-coupled gates. Further, they offered time succession but no real
time analysis, :

DLASAR STIMGN represents a next generation where cross-coupled
gate latches can be recognized automatically. STIMGN also can recognize g
and store, for later reference, the existence of logically inconsistent com- &
binations (illegals) of memory element values. STIMGN has zero-delay gate
models and, therefore, stumbles badly over real timing problems, but
DLASAR provides more realistic unit-delay gate models in it simulator i
SIMUL. STIMGN requires a significant amount of workarounds -- special T3
models to circumvent STIMGN'’s incorrect view of timing -- but experience 4

has shown that the combination of STIMGN and SIMUL provides good timing
analysis and effective test generation,

Elsewhere, work has been don'e on test generators that incorporate more
realistic timing models with the intent to provide test generation, timing

‘_"‘ * analysis, and fault-coverage analysis in a single integrated program. This i
\.4 i a very different task, and this writer is not aware that any such development i
! has improved upon the STIMGN/SIMUL /DYSOGN capability. .
1 STIMGN g

3

Regardless of the primitives used in specifying the network model to
INPUT, STIMGN sees an equivalent all-NAND model. If timing work-arounds

LATLL A e

X _ are provided, then the STIMGN model will differ from the SIMUL -DYSOGN

i’-.‘ o model., Conversion to all NANDs results in more gates and more gate delays D
4 than the user's model. The extra gate delays affect SIMUL but not STIMGN, 3
| since the latter ignores all delays. However, the added NANDS, increase size ;
1 !‘ of the STIMGN files, increase STIMGN run time, and tend to make STIMGN's

fault -coverage percentage optimistic. In every case, if the NAND~-equivalent M
model is testable, then the user-specified model is equally testable, and with
the same vectors, ’

ﬁ Unless certain options are specified, STIMGN will begin with all nodes

f( specified as don't-knows (X) and will select the first output listed on the

- OUTPUT control card, The subsequent STIMGN activity will cause that out- '
| put to be sensitive to a string of possible faults. When not under ALEC control D
| STIMGN will ignore all other outputs until the upstream logic is tested as

completely as STIMGN can achieve. Under ALEC, STIMGN will go to the

next output as soon as a test sequence is determined for the present output.

E Starting with all nodes set to don't-know values, the source gate is

& initially assigned a zero value, which is backdriven to assign all ones to the gate

\ inputs. Later the output will be agsigned a one value, which will be backdriven
to asaign a single-zero vector to the input. The gate inputs are ordered by

j ! their driver (upstream gate) numbers in monotone increasing order. The

D assignment of a critical (defined later) input value starts with the lowest -

S order input and progresses to the highest -order input. Where possible, each

\ : gate will have input agsignments of all ones and all single-zero combinations

. under circumstances where the possible gate-output errors would propagate
: to observable outputs.
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When any such input assignment is made, the next activity will be a
forcing of the assigned values to directly connected gate pins to determine
whether all logical relationships are consistent. If no logical contradiction
is encountered {it will not be for the source gate but could be for other gates),
then the next activity will execute. If a contradiction obtaina, then that test
attempt is aborted and a modification is attempted by “"toggling" the last gate
considered before the contradiction was computed.

"Toggle" means that the zero of a single-zero vector moves to the next pin on
the same gate. Don't-know conditions which attended the toggled gate prior to
backdriving that gate are temporarily restored. Thus, unsuccessful trial
gate input vectors are discarded without trace except that they will not be
repeated. If all toggle variations on that gate fail to resolve the contradiction,
then the previous gate is toggled. This process continues until a noncontradictory
condition is obtained or all toggling variations are exhausted. The latter
conclusion means that the attempted gate test could not be achieved while using
the designated output, If it had succeeded via a different output, STIMGN would
not discover it until it eventually designated that output as a source and resumed
its procedure or DYSOGN discovered it and reported it to STIMGN. This is one
reason that STIMGN run time is reduced by ALEC through frequent use of
SIMUL and DYSOGN to evaluate STIMGN results,

Assume the prior gate-input assignment did not result in contradiction
during the foreing. For gates with critical zero (CO) output, the input is all
ones and each input is critical. However, STIMGN is not designed to back-
drive from all of these critical ones to the extent possible. Rather, STIMGN
in effect selects a single one-valued input as critical while using a look-backward
scheme to make a near-optimal choice. It then backdrives all of the remalining
one-level inputs several (perhaps two) levels, but not to a greater extent. This
obscure algorithm avolds exploring more than one critical path at a time, yet
it appears to succeed in accounting for the inherent criticallty of all of the all-
one inputs. For gates with critical one output (C1), the backdriven input
vector will always have a single zero, which will be critical (C0) and all
other inputs will be ones which will be necessary (N1). For gates with a
necessary zero (NO) output, the backdriven input vector will be all (N1). For
gates with a necessary one (N1) output, the backdriven input vector will have
a single necessary zero (NO) and all other inputs will be "don't-knows" (X). This
helps to avoid unnecessary contradictions. See Figure 10 on page 15A.

The actual STIMGN detalls are not known, but presumably a contradiction
between a backdriven input assignment and a prior driven input assignment would
result in toggling the downstream input assignment that resulted in the backdrive.
However, it is conceptually possible that the backdriven input would be toggled
first.

As each such upstream assignment is made, its consequences would be
forced, where fanout existed, to determine whether a contradiction would
result. As before, contradictions result in toggling to attempt to find other
noncontradictory assignments.
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Note that D414,

SAR has a "lookahead" algorithm which would o
probably assign a 1" for the X Input of gate 6 and a "0" input :
for gate 4, thereby achieving tegtg of gates 3 and 6 even though ;
they are not on a path marke¢ critical, Gate 2 inputs would i
remain as NO anq X, i

Figure 10. STIMGN Example ‘




| This process continues until all of the next upstream nodes are external

- inputs and all the latches have zero inputs, If this condition is satisfied, then a
particular test has been completed, and STIMGN will identify as detected the
failure modes corresponding to the string of critical input vectors. If at least

A one latch having all-one inputs is interposed, then the latch value i recursive,

E and the latch and external input values so identified provide one total state to

\ be achieved in a test sequence. The recursion makes it necessary to find the

1 total state that must occur earlier in actual testing to achieve the required

present set of latch values. Thus, the process drives backwards through
i the latches and continues as before,

i As described, STIMGN generates a single string of critical ones and

‘{ zeros for each test sequence. By construction, each of the critical input

‘ji vectors tests a fallure mode STIMGN can determine, and these are listed

: as detections. Where reconvergent fanout exists, some of the apparent

A detects will not be valid, (See Appendix B.) This determination and that

;j of identifying incidental parallel detects is a task left to DYSOGN. Timing
" analysis is left to SIMUL. Compaction of tests sets is left to OVRLAY.

i The toggle scheme is used for more than avoidance of logical inconsistencies, ]
[ Assume STIMGN is not executing under ALEC so activity remains associated o
i with just one source output. When a test set is completed, the last active gate C
A is toggled to initiate a new test set. Forcing, testing fo. inconsistencies, and

: further toggling continues until a complete new test is selected. This procedure .
determines the necessary initial conditions for the new test and avoids the need |
for recalculating a critical path because that previous path is used to the

K extent possible, Further, the toggle scheme simplifies the problem of avolding E
repetition of previous tests.

o
- When operating under ALEC, STIMGN changes source outputs after each
ﬁ" test set determination. The status of the previous critical path and associated

s .

value assignments are stored so when STIMCN returns to a source output, it

|
resumes as though there had been no intexrruption other than the increased list
nf detections,

o« sl

Illegals

If a combination of latch values is sought but found to be contradictory, . 1
then that combination is labelled "Illegal". Illegals are filed for later ‘
reference to avoid futile backtracking. The program WHITLE merges the
logical combinations, which identify Illegals, to produce more compact
definitions of the Illegals.

o T T LT I D P

There are two Illegal tables, permanent and temporary, If the latch ,
values comprising an Illegal are initially "don't-knows", so all possible
combinations are explored, then the Illegal goes to the permanent -Illegal )
3 table and is held until the job is ended. If latches comprising an Illegal are
i conditioned by prior critical or necessary assignments, then the Illegal goes ‘
into the temporary Illegal table to be held only as long as the conditions
remain valid. "Illegal PREPROCESS" is an optimal STIMGN procedure that
starts with latches closest to external inputs and tries to initialize each latch
in all possible ways, The goal is Lo preload the permanent Illegal table which

ity T RIS T

18

P~ Lol .
VAT RVIREWFURITTICINT W T R SR e




e P e A R W

b

L=

reduces the eventual load on WHITLE and STIMGN .

WHITLE

If a combination of latch values is sought by STIMGN but found to be
contradictory, then that combination is identified as "Illegal” and filed to
avoid future futile backtracking. The purpose of WHITLE is to combine the
Tllegal combinutions to reduce the file space.

WHITLE details have not been disclosed; WHITLE could work as followe:
If each latch were uniquely labeled, e.g., A or A, according to whether the
latch value 18 one or zero lor a particular Illegal, then a concatenation of
appropriate labels would designate an Illegal intersection of latch values.
For example, ABC could identify an Illezal that exists when latches A and C
are one-valued while B is zero-valued. The list of Illegals forms a union .
of latch-value intersections, which corresponds one-one to a Boolean function
in sum-of- products form. Thus, the problem of reducing the iist of Illeguls
i8 equivalent to the clussical problem of minimizing a Boolean sum of products.
Near-minimal reduction will be satisfactory for Ilegal lists.

Two kinds of redundancy in Boolean sums-of-products formulas are

"literal® and "term". Use of the following identities will provide a near
minimal reduction. '

Let A,B,C ... bethe Boolean variables representing a set of lutches,
Symbols +and - will represent Boolean operators sum and product respectively.

A+A = 1 AA =0

A+A‘B = A, A+A'B = A4B

A-(A+B)=A, A.(A+B)=A'B

A'BsAC+B'C =A'B+A.C
The latter identity is discovered hy Mott's(3) expansion theorem whareby a set
of terms is formed in the following way: For each pair of terms in the sum-of-
products formula, which have a literal complemented in one term but not in the

other, form the product of the literal of both terms excluding the singly
complemented term. Thus, for (A'B + A.C), form the product B-C.

If that product is not zero, then join that product to the union of redundant terms.

When all such pairs have been processed, cancel those terms in the originat
formula which appear in the redundant set,

AB
Example CcD 00 01 11 10
00 0 1 0 0
o1 0 1 1 1
1n 1 1 1 0
10 0 0 1 0

F=BD+ABC + ACD+ABC+ACD
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ABC + ACD — BCD — = "implies"
ABC +ABC — 0
ABC + ACD == ABD

ACD + ABC == ABD

ACD + ACD —+ 0

ABC + ACD —= BCD

BCD + BCD — BD |
ABD + ABD —+ BD |

hence BD is redundant {n the F formula. |
OVRLAY o

OVRLAY is designed to reduce the number of STIMGN -generated test sets. o
It takes advantage of don't-care inputs by assigning them, where posasible, to
iE allow two test sets to be merged into one.

[

;| Constder two test sets labelled R and S where R S 8 ({.e., with respect i l 3
e to numbers of patterns). OVRLAY compares the ith pattern of R with the ith -
! patternof Sfor 1= 1, 3, ..., lynoy (R). Ifnobit of R 18 the complement of '
" the corresponding bit of 8 for aﬂ‘l”,‘ then R and S are replaced by 8' where the \
& zeros and ones of R replace the corresponding don't-cares in 8 and vice versa. X

If at least one bit of R and S are complements, then set R is raaligned
i one pattern position with respect to 8 (i+1 pattern of S compared to gth pattern
! of R for all 1) and the process is repeated. If no merging of R and S proves
l ’ possible, then each is processed similarly with the other test sets.
|

It is not known whether the R, S set comparison is stopped when the last
patterns of each i8 aligned. Presumably this is true: otherwise it would be ;
. possible for appropriate test sets to merge the first pattern of R with the last
: pattern of S to form a merged set of R+S-1 patterns.

e

- When OVRLAY has completed its merging procedure, it assigns each
o remaining don't-care to the previous assigned value. This minimizes the

X | number of variable changes due to don't -care assignments to help reduce the

[ incidence of races and hazards, virtually eliminating anv possibility of further -
3 merging ttn ;l)xe event that OVRLAY were rcentered (which would require special o
user control). K

e S

- Note that OVRLAY does not attempt to reduce the length of test patterns.
Also, it precedes the execution of DERACE in SIMUL, hence it has no opportunity
to merge patterns after DERACE has added buffer patterns unless SIMUL patterris
3 are resubmitted to OVRLAY, which requires special control. Further, under
ALEC, OVRLAY operates only on the STIMGN patterns of each ALEC pass;
hence OVRLAY is not permitted, under ALEC to provide a near-optimal merge.
Incidentally, OVRLAY is not likely to achieve, under any available control
acheine, the best possible merging because each merging of two test sets
constrains possible further merging with other test sets.
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VI. LOGIC AND TIMING SIMULATION

Introduction

When given a digital network model and a sequence of stimuli, logic
simulators compute the fault-free response of the network to the stimuli.
There can be a considerable variation in the representation of gate behavior
depending on what the simulator designer wished to achieve. Most simulators
provide three states per node to represent 0, 1, and don't know. The simu-
lator in reference 4 provided 0, 1, and two don't know states, one non-propa-
gating for initializing the simulation and one propagating. Eichelberger(5
showed how three states may be used to represent static one, static zero, and
transition. This provides a means of analyzing hazards and races, and is in-
corporated in the Hewlett-Packard TESTAID-III simulator. Additional states
may be employed to represent the high impedance of tri-state bus drivers, and
signal rise or fall. Adding states provides improved realism but also addi-
tional execution time,

Modelling of sequential activitly requires a representation of time. Some
early simulators were based on the synchronous design of the logic in that com-
binational logic was simulated without implied circuit delay, while flip-flops
were defined by the user and allowed to change state only under control of an
explicit clock. This did not handle unclocked latches and did not account pro-
perly for unidentified memory elements,

Unit gate delay implies that all gates have the same delay. ' Typically the
bits of each input stimulus are applied to the network simultaneously, then the
outputs of the first level of gates are coniputed as one event., Where the output
values have changed and drive downstream gates, those gates are put into a
change list. When the present level of gates has been completely processed,
then the gates in the change list are similarly processed 80 that a new change
list is formed. This process continues until activity stops, as indicated by an
empty change list, or a run-time threshold has been exceeded (e.g., a very
long counting sequence). Each pass through a change list constitutes an epoch
that marks one interval of an implicit clock. The unit-delay representation does
not require identification of explicit clocks and accounts for memory-element
behavior without help from the user.

A need for more realistic modelling of timing arises where different
solid -state technologies, e.g., TTL and ECL, are used together, and where
custom high-performance chip designs are to be modelled; i,e., where circuit
timing is adjusted by the designer to meet the performance requirements.
Variable gate delays may be obtained by making the unit gate delay equal to
the greatest common denominator of the delays to be used in modelling the real
circuits. Then single -input gates are concatenated to add the necessary delay
to each decision gate. The consequences of the increased gate count may be
intolerable: more memory will be required by the simulator and the execution
time will be slower by a factor equal to one plus the number of dummy gates
required to compose the average simulated gate delay.
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A better alternative for achlieving assignable gate delays is to use the so-
called next-event timing. Each gate type requires a multi-bit time tag, which
is loaded at model-generation time with the appropriate number of greatest-common
denominator time delays. Gates of the same function, e.g., three-input NAND,
may be defined with different delays by assigning suitably different labels and the
appropriate time tags. When any gate is processed and its output is found changed,
the immediate down-stream gates are put in a change list similar to that of unit
delay processing except that the time tags will be in monotonically increasing
order. The next gate to be processed will be at the head of the list and will have
the smallest (not necessarily. unique) unprocessed time tag. Each different
time-tag number corresponds to a gate activity. A savings in processing time
is achieved by skipping over intermediate unrepresented time tags. - , :

SIMUL

The logic simulator for D4LASAR is SIMUL, ahd it 18 a three-state unit-
delay simulator. A variation that permits assignable delays has been developed
but his not been released because it is seven times siower than the unit-delay
SIMUL,.

SIMUL accepts stimulus patterns from OVRLAY, TECO or (user-specified)
PATGEN and drives these forward to determine their effects on all nodes for
all patterns. [nitially all network riodes are set to the don't-know state, X. The
first pattern is applied to the gates connacted to the external inputs, and the gate
outputs are calculated. This constitutes time "0". The gates with changed out-
put are listed in a status table; the gates driven by the changed outputs are listed,
and their outputs are calculated. This constitutes time "1". The new changes
are incorporated in the status table, and the process continues, The signal
changes propagate through the network like a wavefront, one leval of gaies at a
time. There is no processing of static gates, which is a significant time saver.
This procedure continues until the next change list is empty. Then all of the
nodal values are saved in a flle (for either SIMUL printout or later use by
DYSOGN), and the next input stimulus is applied.

Known Relationships Between Unknowns

e oy
L )

There are circuits that are well-behaved but whose output cannot be com-
puted when all nodes are initially don't-knows without other information. If a
NAND gate has a zero input, its output will be one. With a single don't-know
input X and all other inputs one-valued, the output is X

°—"—1 " X, = %
X — 1 U

For X to have meaning, the X must be subscripted to identify which node is X
and which is X, Both X and X, into u NAND is equivalent to a zero input which
causes output of one, regardless of other inputs. The output of a NAND loses
its subscript information if the inputs are X, Xj +» 1, v+, 1, unless X; and xj {
are strongly related in a known way. |
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A necessary relation for logic simulation is that of a latch with comple-
mentary don't-know inputs.

DLASAR retains these relationships in its logic simulation.

The use of strictly NAND modelling simplifies the simulation procedure
and helps to speed the prucess, However, an all-NAND representation contri-
butes unreal timing since only NANDs have single unit delays. AND and OR
gates require two levels of NANDs and, therefore, incur two unit delays.
WIRED AND (incorrectly named WIRED OR in DLASAR documentation) incurs
two delays unless modelled by direct connections of no delays, NOR gates -
require three levels of NANDs and three unit delays. The lack of agsignable
delays yields unrealistic delays and possible incorrect race/hazard analysis
when primitive functions other than NAND are used,

The irrevocable procedure whereby only one external stimulus is applied
while the network is active is appropriate for test fixture applications where
stimuli are held static until the unit under test becomes static. However, it
gives rise to irksome or serious problems where logic is clocked, or is pipe-
lined, or is subject to time-staggered inputs.

IR Clocked Logic

When a device is carefully designed for clocked operation to avoid races,
hazards, and cycles, the clock input will be treated by SIMUL (and most other b
‘ simulators) as though it were an ordinary data input, The logic designer's L
2 timing rules are frequently violated for latches (data inputs should be static
| before, during, and after the clock comes on) so races and hazards result. 4
SIMUL will spend much time analyzing the races and hazards and will attempt :
to add "buffer" stimuli to reduce the number of inputs changing at any one time.
It is possible to use the editing capability of TECO to force stimulus bit changes K
in the manner of a clock, but the procedure is not automated -- clock input can-

_ not be specified -- so that tedious scanning of and addition to OVRLAY stimull

! is required.

The choices available to the user for testing well designed logic are
. 1) allow race/hazard analysis to execute (by default) and accept the resulting ,
! increased SIMUL run time, enlarged buffered data sets, and warning messages, «
‘.; or 2) shut off the race/hazard analysis (option) and incur races and hazards :
- pecause the stimuli are violating design rules relating to clocking, or 3) ‘
; manipulate the OVRLAY stimulus sequences via TECO such that the model o
{ executes as the designer intended with respect to timing, It would be desirable o
H to have an option that permitted an input to be identified as a clock, with the




property that 1t would be automatically specified in SIMUL, prior to race/hagard
analysis, as off when data and control inputs were changing, and as on when the
other inputs were static. ;o

Race/Hazard Analysis

I the inputs to a two-input NAND change from 0,1 to 1,0 (or vice versa)
then, depending on their relative timing due to upstream delays, they may have :
momentary values of 0,0 or 1,1, The 0,1;0,0;1, 0 sequence will assure a
constant NAND output of 1. The 0,1;1,1;1,0 sequence will cause the NAND :
output to change from 0 to 1 and back to 0, If momentary , this pulse is re-

! ferred to as a spike. It may be intentional as with certain designs of pulse

‘ generators, or it may be an unintentional consequence of circuit delays.

3 Whether the end result of an unintentional pulse is serious depends on the

. duration of the pulse and whether it affects a latch, In the switching~theory

literature, such an effect is called a race if the spike-producing variables are

‘ : due to memory elements switching at different times, and the effect is called

¥ ! a hazard if combinatorial circuit delays produce the delay differences of two 3
otherwise simultaneously switched variables. A race or hazard is critical if S

Y ; it causes a latch to be set incorrectly. DLASAR's SIMUL evaluates both races 1

hazards, and, generally, reacts only when critical. SIMUL warning messages

use terminology different than that of switching theory literature,
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Nominal Race

Timing analysis is done for both nominal and worst-case delay distribu-
tions. The warning message "nominal race" can be caused by two different
circumstances. If, as shown in Figure 3, a latch has zero-valued inputs fol-
lowed by all-one inputs for successive change-table times, then a classical
. static hazard will occur because the outputs should, according to normal latch
¢ operation, remain at the previous value, They will be indeterminate because
the latch could settle either way. The change-table simulation of SIMUL will
. calculate alternate 0,0 and 1,1 latch-output pairs, SIMUL will monitor the

] number of times each node changes for each input vector. If the change count
‘ for any node equals the race threshold, the warning NOMINAL RACE will be
. i declared and the node identified for that input vector. "RACE THRESHOLD"
4 1 18 a SIMUL option that may be set as high as 999 and which defaults to 20.
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This "nominal race" is the classical "static hazard" of set-reset flip-
flops where the outputs should be 1XXX**‘but are simulated by SIMUL
as shown. After the race threshold is equalled, the latch outputs are

labelled X

R PRI e om0

Figure 3. Nominal Race (type 1)

:
4}
|
]
22 a 3




S R e S S B TSR T

B kTR s

|
3

T o

e mmmn

e e

Static hazards are thus identified as nominal races. It is possible to
trigger this alarm without a latch, For example, a simulation of a new 16-by-
16 combinatorial multiplier design resulted in a declared nominal race for
RACE THRESHOLD = 20 (default value), This phenomenon occurred because
the logic chains were very long and were impacted by other logic chains at
many nodes. Thus, some gates happened to change outputs repeatedly before
settling into their final values, and the change counts exceeded the threshold.

~ ‘Since no timing problem really existed, the RACE' THRESHOLD- Wu tnoruud

0 the numbor of pto changu wu thon moctwaly 1¢noud. =

" There 18 a second way to obtain & warning of NOMINAL: mcn u one
lateh input has a value of cne and a negative pulse of ohe-gate -delay duration’
drives the other latch input under nominal sonditions, then NOMINAL RACE
will be declared and the’ approprb.tn locatton lnmrmtlon gtvcn. mgure' L
shows such a condmon. ‘ .
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Input Vector 1: 1,3,3 = 1,1, 0; 201, 901,313,913 = 0, 1,0, 1
2: 1)3,320,01; «0,1,% X

Nominal Race Message: Nominal race on pattern 2 found at node
218, The following additional nodes will be set to X -« 813,

Possible Spike Message: Possible spike at node 101 due to 31 and 1
has a nominal margin of 10 nanoseconds.

Figure 4. Nominal Race (type 3) and Possible Spike

Possible Spike

If under normal conditions a pulse is generated at the input to a latch
which under ideal conditions will not change state but might under non-ideal
conditions be affected by the pulse, then POSSIBLE SPIKE is declared with
the spike width and location information . Figure 4 illustrates an example of
a possible spike, Note that 10 nanoseconds is one gate delay in DLASAR
messages. Had the delay difference been three gates (it must be odd), the
message would have stated 30 nanoseconds.
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Worst-Case Race Analysis

In addition to nominal races, races may occur due to transient conditions
which derive from worst-case delay conditions. The analysis is done as follows.

After completing the forward-drive simulation and the nominal-race anal-
ysis, SIMUL back-drives with nominal delays and looks for gates whose present
and prior output values were both one. If, in such a case, two of the gate inputs
had changed in opposite directions, then a forward trace ls executed to determine
whether a latch would be affected. There is no analysis to see whether that
changed latch value would have any significant further effect, and in that sense
the SIMUL analysis is pessimistic .,

If there were a spike and a latch apparently affected, then a back trace
executes with worst-case delays in the two paths that cause the spike. If there
is 3 nominal delay difference, then it is, in effect, assumed that the designer
wanted one path slower than the other. Worst case is defined as a condition
that tends to reduce delay in the longer path while increasing delay in the shorter
path. This is accomplished by subtracting the TOLERANCE percentageof a
single gate delay from each gate in the longer path and adding the same per-
centage to each gate in the shorter path. If the worst-case pulse width is less
than the "SAFE TIMING" option value, then the warning "ASYNCHRONOUSLY
SET LATCH" is produced. (See Figure 5.) Otherwise, the condition is as-
sumed to be satisfactory and no message appears, The SAFE TIMING threshold
may range from zero to 99.9 gate delays. Default is 10 gate delays.

T -

}“4 814
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fnput vector 1:1,2,3=1,1,0;203,002,214,914=1,1,0,1
3 0,01 =0,1,1,0

Asynchronously Set Latch Message: Latch nodes 214 and 914
asynchronously set to 1/0 due lo an unsate 30-nanosecond pulse
on hude 114,

Dangerous Timing Message: Lateh nodes 903 and 202 were at 1/1
alter the inst pattorn and are at 0/1 alter this pattern due to 3
going tu 1 on level 5 und 102 going to one on level 8, Timing
margin = 10 nanoseconds,

Figure 5., Asynchronously Set Latch and Dangerous Timing
(SIMUL options: NO DERACE, SKEW = 0, otherwise
default)
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Migure b illustrates one other worst-case timing circumstance analyzed
by SIMUL. ! the inputs to a latch change from 0,0 to 1,1 and the nominal out-
put is determiniatic (i.e,, the nou:inul input delays assure no nominal race),
but worst-case delays could change the times that the inputs switch, such that
the opposite latch value would obtain, thea the message "DANGEROUS TIMING"
would be produced.

Race Ratio, Path Ratio, and Tolerance

The worst-case race analysis assumes that the nominal ratio of total path
delays is correct and that a timing problem would exist if the path with fewer
gates had a delay equal to or greater than the path with more gates. SIMUL
assumes a nominal unit delay per gate and, in worst case, a gate delay of 1T
where T = TOLERANCE/100. TOLERANCE is the user-specified option which
is the fraction of a unit delay by which any gate can deviate from nominal in
worst-case conditions, The default value for TOLERANCE is 33 (percent) for
which worst-case gate delay is 0,67 or 1,33,

A race exists for a converging pair of paths of gate counts NgyoRrt and
Npong if a latch is atfected and:

N (1+T)/N

NSHORT 1-T) 21

LONG

Define race ratio R = (14T)/(1-T)

path ratio = NLONG /NSHORT

Then a race exists if

[NsporT/Nrongl* (Rl 2 1

or  Npong/Nsuorr € R

No race if N /N R

LONG NSHORT ~

This is summarized in Figure 6 where race ratio is plotted as a function
of T. For example with default TOLERANCE =33, T=0.33and R =2.0, s0
any path ratio greater than two cannot cause a race, while a ratio less than or
equal to two can cause a race. This curve can be used by designers to eatablish
path ratios for a given T, and to simplify visual checks of schematics for pos-
sible races. It also suggests that SIMUL's race analysis uses a simple arith-
metic process once the suspect path pairs have been identified and the gate
counts established.

a5

l
|
v




B

1.0

RACE REGION
0.8

d

NO RACE REGION

D4LASAR
DEFAULT

|
0.4
TOLERANCE

0.2

NO RACE IF PATH RATIO
EXCEEDS RACE RATIO

-

FOR GIVEN TOLERANCE

1 | B

100

50 |-

. o
-

W= 1/iL + 1) = 4 OLLVY 30V

(T

Figure 6. Race Ratio versus Tolerance
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SKEW

! ] A SIMUL option i3 SKEW, which assigns a delay variance to the hypo-
N thetical tester that provides the input vectors. SKEW ranges from zero (si-
multaneously applied inputs) to 999,90 gate delays. Default is 200 gate delays.
‘ During worst-case race analysis, SIMUL takes the worst of lesser/greater
i delays for each path pair that could cause a race, SKEW cannot be used to

i assign fixed delays to provide time-staggered inputs because SKEW provides

t both lesser and greater delays. There is no option to provide inputs with
i fixed time stagger.

DERACE

____“A_u,_n
S ks

. If the "NO DERACE" option is not specified, then SIMUL will attempt to
« ' remove race conditions by adding "buffer" vectors to the test-vector sequence
4 in such a way that the number of external input bits that change at any one time
are reduced. Buffer vectors are labelled. Where reconvergent fanout is
causing a race, buffer vectors cannot resolve the race 8o none are added for
such races. [nstead, the appropriate warning and location information are
produced, and any affected output is marked "X" so it will not be used by
DYSOGN. There is a "NO X" option in the event the user chooses to disregard
the consequences of races discovered by SIMUL.

Commentary on SIMUL Timing Analysis

Specification of a single nominal delay per gate and a single worst-case
delay tolerance does succeed in discovering many timing problems that are
shown to be real when the circuit is examined. However, real-world gates
‘ vary considerably in range of delay, particularly when both slow and high-speed
by technologies are used together (e.g., low-power Schottky and emitter-coupled
J logic). In such circumstances assignable gate delays are desirable. This is
: particularly valuable when simulating circuits with significant time stagger in

|
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the input signals. Digitest has developed a "variable delay" option but has not
released it because it incurs a slowdown by a factor of seven. Some increase
in run time appears inevitable with assignable delays because there must be

increased file processing. However, it is not clear that the run time penalty |
need be excessive if an appropriate algorithia is used. ﬂ

= The sum of worst-case gate delays along a signal path becomes in-

' creasingly pessimistic as the path length increases. It is8 by no means clear
as to how to interpret or circumvent this problem. The unit delay per gate
is an abstraction not subject to change. However, a race derived from rela-
tively long chains of gates tends to have an exaggerated estimate of the delay
difference. Such races could be re-evaluated with TOLERANCE set to a
%’ ; : smaller value, which would reduce the worst-case delay difference.

Differences in rise and fall time will tend to average out, Nominal delays not
centered between minimum and maximum worst-case delays are not likely to
contribute serious timing errors. However, conversion of other primitives

? i . to NANDs can result in significantly different timing repreceniation, and there
: is no simple way to counter this in DALASAR.

|

7 There are other contributions to inaccuracy in timing representation.
|
|
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To summarize SIMUL-timing comments, timing representation may be
significantly erroneous, yet the results of the SIMUL race/hazard analysis are
usually useful. Understanding of the timing representation is necessary
because:

T
S N Y

1. Race/hazard options must be chosen. The default values
v may be incorrect for the circuit modelled.

2. Partitioning of a large network into manageable subnets .
may require a special timing specification,

TS TR I T

3. The reason for race/hazard warning messages must be .
determined 8o a decision can be made to ignore them or o
prevent the race. '
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VII. FAULT SIMULATION

PR

Introduction

Where the basic purpose of a logic simulator, such as SIMUL, is to
compute the expected responses of a fault-free network to the excitation of a
: sequence of input vectors and memory states, the basic purpose of a fault
Y simulator is to do the same with all variations of the network under all the
fault conditions of a specified fault class. This leads to the most important

problem of fault-simulation programs, namely the large number of fault
simulations required and the total execution time,

£ N

-
R ]

Roughly 3.5 stuck-at faults per gate are possible for a typical network;
hence, for a 20, 000-gate processor with at most one fault at a time, about b
| 70, 000 faults require simulation. In a production environment, or in a field Do
4 environment where repalr is delayed, there may be more than one fault at a ?

‘ time. If the 70,000 faults were accounted two at a time, then over 2 billion Yo

single and double fault conditions would require simulation. Hence, multiple P
| fault conditions are rarely considered. Some studies reported in the litera-
; ture have shown that tests that achieve 100 percent single stuck-at fault cover- !
: age will also detect most of the multiple stuck-at fault conditions. Other ‘,
i studies also indicate that tests that provide high-fault coverage of single »‘
1

stuck-at faults will also provide high coverage of single bridging faults (that A

is, shorts between adjacent signal paths). It should be noted that a fault

& directory, based on detection of single stuck-at faults, may provide excellent
o location information for single stuck-at faults, but is likely to provide incor-

! rect location information for bridging or multiple stuck-at faults. ;

A e e et il et i B

|

“ What about other fault types such as inadequate timing marging? When
- a simulation program is likely to require long run times, one does not wish to
burden it with further tasks such as increased size of fault set or analysis of
timing malfunction. Consequently, D4LASAR is designed to execute most of
the race/hazard timing analysis in SIMUL rather than DYSOGN. DYSOGN i
provides analysis for nominal races, but no other analysis of fault-derived 1
timing malperformance. The risk incurred by omission of fault-derived ©
worst-case timing analysis is not known,

The time to complete fault simulation is reduced primarily through some _
form of concurrent processing. "Parallel" fault simulators execute multiple 3
simultaneous simulations. Thrce possible parallel fault-simulation approaches :
are: ;

1) Assign outputs of different gates to the bits of a word and
apply the inputs, corresponding to execution of one test at
a time, to these parallel-processed gates. This approach
is facilitated if the gate functions are identical. An n-bit
word would account for at most n failed gates.

29 b




2) Assign the output values of a gate, which correspond to different
failure modes of that gate, to different bits of a word. Thena
single test will execute at a time with inputs to each gate appro-
priate to the input combinations required to evoke an error if the
corresponding failure mode existed. An n-bit word would account
for, at most, n failure modes per gate.

3) Assign a single gate to each word with each bit modelling the
output value of the gate for a unique test. An n-bit word would
account for at most n simultaneous tests.

Parallel fault simulators have lﬁen superseded by fault-list simulators
based on a scheme of Armstrong's L) where parallel fault simulators require
multiple passes through the network model while simulating n (n = number of
bits in word) faults at a time, the fault-list simulators account for all of the
faults corcurrently as the simulation processing proceeds from inputs to outputs
for each test, The fault-list simulators are faster than the parallel simulators
for large networks because the time saved by avoiding iterative simulation is
greater than the time lost in processing the very large lists of faults, Fora
range of "typical" networks, the run time of parallel fault simulators increases
roughly as the number of gates to the 2.5 power, while the run times of fault-

" list simulators increase roughly as the number of gates to the 1.5 power.

The following description of fault-list simulation is based on reference 4.
DYSOGN uses a similar technique but with added features that have been found
to provide significantly faster processing.

Fault-List Simulation

A fault list is a set of faults with the following properties: 1) a fault list
is defined for each digital-network node for vach time it is in steady state, and
2) the list for each gate identifies all of the stuck-at* fauits that could be de-
tected if that gate were observable., The fault-list algorithms account for single
and multiple faults and are constructed to account for a gate tault propagating
through the same gate during later iterations,

*  Reference 4 was the first published algorithm for fault-list simulation,
Unfortunately, the equations contain an error. The equations here are an
adaptation of the fault-list portion of that report. The description here will
first cover fault-list simulation where there are no don't-know conditions, then
these will be accounted afterwards.

Let A and B be any two fault lists., We define four operators, three of
which are set-algebra operators,

Unlon AUB contains those faults contained in A or B,
Intersection Af B contains only those faults common to both A and B,

Outputs stuck at one or zero and inputs stuck open. When an input is open,
the gate sees a stuck-at one input value. Input values stuck at zero can only

be due to the upstream gate output being stuck at zero when fanout is unity,
under the assumptions used here.
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Difference A-B contains those faults of A which are not in B,
(A-B = ANB)

Exclusion A 0B contains the faults of A if and only if B is empty.

The use of the fault-list difference arises from the need to identity the
case where two inputs are switched from (0,1) to (1,0) by a fault, Such input
faults will not be transmitted to the gate output fault list,

The use of the {ault-list exclusion arises where a node fails to its nor-
mal value. While the nodal value does not change, there can be no fault de-
tection at that node and no upstream fault list can be transmitted through that
node,

Difference precludes some of the input fault list while exclusion pre-
cludes all of the input fault list where the appropriate conditions hold.

Fault lists may be defined on any primitive function, but will be defined
here only for a generalized NAND gate., Figure 7 diagrams a NAND with m-
many inputs, establishes the required labels, and presents equationa for com-
puting the output fauli list as a function of 1) the fault-tree input vector,
2) the fault lists associated with the sources of the luputs, and 3) the faults
which could be contributed by the gate alone. Inputs are numbered 1 through
M. The fault lists associated with the input sources are labelled Fq through
Fym . Inputs open are labelled fy through fay (each open input would be equiva-
lent to a stuck-at-one value on that input). Qutput stuck at one or zero is
labelled fgs1 and fga0 respectively. The final output fault list is labelled F.
Inputs stuck at zero are not considered primarily because most gate imple-
mentations do not have a significant corresponding failure mode.

Whei more than a single input is zerc or one -valued, it is convenient
to handle them in sets. The symbol U designates the union of fault lists on
those inputs that have the value k, where k is zero or one. The symbol h
is defined similarly for the intersection of fault lists.

Equation 1 in Figure 7 is identical to Equation 1 of reference 4, page
1464, except that reference 4 does not recognize the need for both difference
and exclusion operators, Equation 2 of reference 4 is subsumed by Equation
3 and is not included here. Equation 2 of Figure 7 differs from Equation 3 of
reference 4 in that the set difference (rather than exclusion) is taken between
the intersection set and the union set and exclusion, not difference, is used
elsewhere. Equation 4 in reference 4 will be discussed later,
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Figure 7. Fault List Algorithms




When the inputs are normally all ones and gate G is fault-free, then F is
sensitive to all inputs, and F equals the union of all input fault lists. However,
it ary one-valued input to G has failed cpen, then the corresponding input fault
list can have no effect. The term (Fj 6j) means the fault list agsociated with
3 ith input is excluded when f| is SA1 (i.e., the ith input is an open circult). The
; term \:) (F, 6f;) designates the union of all fault lists on inputs that are not
, failed open and are normally one-valued. The gate output is normally zero so

i | fsa1 is joined to the output fault list. However, if fgs o exists, then all faults :
1 are excluded, and the output fault list will be empty (F = ¢), §

457 R 25T

| ' For the second equation of Figure 7, first assume that all inputs are nor-

* 4 mally zero and the output is one, If there are at least two inputs (M > 1), then 'i’i
a single input open (I; = SAl) could not affect the output because the other gero-

N valued input would hoid the output at one. The case la the same for any upatream

g - SA1 fault that does not affect all inputs to the gate simultaneously. If an upstream

1 ; fault caused all the inputs to switch to ones, then that fault would be detectable

; because the gate output would go to zero (a reconvergent fanout phenomenon),

Thus, the second equation says that, for all-zero inputs, the only de-

tectable upstream faults are those that switch all of the inputs that are not stuck
at one (failed open). : '

Next, assume that both one and zero input values exist on the gate with the
) output equal to one. Initially consider a two-input gate. The output fault list, F,
)| ‘ includes the zero-input fault list jolned with that input SA1, but not including
k| those faults on both input lists, except when the one-valued input is SAl, The i
- t reason for not including faults common to both zero-valued and one-valued in-
puts is that such faults would cause both inputs to change while leaving the out-
put unchanged; hence, there would be no detection of those faults. These faults

_ will be detected when the one-valued input is SA1 so that only the zero-valued
. __ input would be affected by upstream faults.

If that fault affects all of the zero-valued inputs and none of the one-valued inputs,
Hence, the SAl faults for zero-valued inputs are joined to the corresponding up-
stream fauit lists, then these lists for each zero-valued input are intersected.
Appearance of a one-valued input is sufficient to block the list transmitted so
= the union of one-valued fault lists is formed except for those inputs SAl. The
-] I

difference between the intersection list and union list gives the input contribution
! to the output fault list,

. ‘ For multiple zero-valued inputs, an upstream fault will appear in F only
l

- v Output fault fg4 ¢ is joined to F except when fga 1 exists, in which case
g | ) the output fault list would be empty.
'
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Don't-Know Input Effects On Fault Lists

Up to this point nothing has been said about don't-know input values in
fault-list simulation. Here a don't-know nodal value is defined to be an in-
determinate zero ur one in contrast to the high-impedance third state of tri-
state bus drivers.

Consider the four input combinations of a two-input NAND with a don't-
know input. ‘ ‘ ' :

F t
A=A A D fsa1 F
B=XTp I — ‘sa0

3

Fb, 1 [l(”AU‘A) -(Fg G‘B)’ U 'sm] TV

It B = 0, then

Fo,0* H(FAU‘A) Ny U‘B>IU ‘sm] 913a1

F
A=1 —A F_ o
B =X )

Fp (I
l}'
If B =1, then output = 0 and i

(Fp 01,)U) (Fp MB),U ‘sm] %1500

FLI'[

If B =0, then output = 1 and

F1,0 “(FBU‘B)' (FAG‘A)IU’SAO] 9 15a1
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The four equations for F are significantly different, which raises the
question of how to represent them without specifying a value for X and for input
counts greater than two. Two approaches are discussed here:

1) the minimum information approach,
2) the maximum information approach.

Minimum Information Approach

This appears to be the approdach of reference 1 although no discussion was
offered and probably is the approach ot DALASAR (which often sacrifices resolu-
tion for execution speed),

Fo’x - !SAO “SAI , output =1

Fy x = don'tcare output = X

For Fo, x to be correct for both values of X, it would be necessary for
ﬂ (Fiu !1) = ¢, For FA = ¢, either A must be driven by an external input
i

(across whose interface no fault lists are carried) or ts Al must exist. For

Fp = ¢, Fg and fg would have no effect. When A =1 and B = X, then Fy yw=don't
care by definition so that don't-know outputs may propagate until either ah external
output is reached or a gate is reached with at least one zero-valued input, SIMUL
will have marked the external output as X to be ignored. Otherwise the gate out-
put list will be Fg y as defined above.

If there are more than two inputs, the same relations will hold as long as
at least one input is zero-valued. If no input is a known-zero but two inputs are
complementary don't-knows, then one of the two must have a zero value so the
same relation will hold.

The consequence of the minimum information approach is that if there is
a fault in the fault list that is computed for an external output, then it will be
detected by that output, However, it may be possible in the presence of don't-
knows that an external output could detect stuck-at faults, which are not in the
output fault list. Thus, there would be no false detections (i.e., output error
without a fault existing), but incorrect fault isolation could be possible due to
incomplete listing.

Maximum Information Approach

The concept here is to specify a formula for Fg x and another fur Fy
such that the computed fault list would be a least upper bound of the implied
pairs of fault lists when X is specified as one or zero,




LUB Fo’x-'—_:’_[{(FAU t2)-(F5 )} U {(Fa Ut )N (FU 1)} U ‘SAo] % f5a1

ForneithertAnorfB:{ }U{ }=‘FA-FB}U{FAHFB}= FA

For tg butnotty :f -} y{ J={Fa) y{FaN (Fau tg)) = FoU FpU kg

" For f, butnot t :{ Ju } {(Fauty)- Fplu ‘(FAU t,) N¥y)

.

i = FaUts

,. i Forf, and fg :‘ }U{ }-‘(FAU IA)}U‘(FAU !A)H(FBUIB)}

; = FaUfhUFgUtp

", ’ LUB Fy x = [FAUfoU FgU t5U a0 #%0a1 E
) ' For Fj x there is a problem of what to do about the output stuck-ats as both ;‘ - ~,
% output \hﬁues 0,1 may be obtained depending upon the value of X. The LUB of ) i
; these terms is taken to be (‘SAln ?SAO) U (?SAI n fSAO) !
b LUBF) x = {(FA“A)U(FB"‘B)}U{(FBU ‘B)‘(FA”'A)]U fsa1M sa0U a1 M50 ;
- C
For neither fAnor!B:{ ‘U{ }'{FAU FB}U‘FB-FA} = FAU FB l
b o
For g butnotf, " }U‘ }'"‘FAIU‘(FBU‘B)'FA“ FAUFpUIlp ;
For {, but not tg :‘ }Ul }=IFB}U‘FB} =Fg '
| Forf, and A Jol ) ={¢lulFeute) =Fauts [
LUB Fy y = F UFgU 15 Ultsa1 N TsaoUsa1 N fsao)
) .
" )
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The least upper bounds assure that every fault that can be detected by an
external output will appear in the output fault list in the presence of don't knows.,
However, some of the listed faults will not be detected by all of the possible input
combinations. The consequence of this is an inclusion of ambiguities in the output
fault lists so that a dictionary derived from them would provide less isolation
resolution than would be possible if the don't-know values were known,
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VilI. REDUCE

The module REDUCE determines the extent to which faults may be
differentiated by the specified test set. REDUCE also generates the X,Y, %
fault-isolation tables. The differentiation of detected faults is accomplished by
intersecting DYSOGN fault lists and their complements.

As an illustration, assume a network with two outputs is exercised with
two tests. Let A,B,C,D be the fault lists respectively for first test and first
output, first test and secon< cutput, second test and first output, second test
and second output. For any fault to be suspect, it must be in all of the fault
lists associated with every output error.

The outputs may produce errors in any combination depending on the
existing fault and the test that is executed. For two outputs, there are three
combinations of error patterns: E; N E, NE E1 NE,. The maximal

% gil'en b§ the'torlof

fault isolation obtainable from each test ing table,
Test Error Implied
No. Pattern Faults
1 El n E:2 ANnB
1 E1 n E:2 ANB
1 l!:1 N E2 ANnB
2 E:1 N E:2 cCnD
2 E1 2 cCnD
2 E_:L 9 cnD

The maximum isolation information obtainable from the whole test set
sequence of output error patterns obtained

_ﬂ___

is obtained by first observing the
when the test set s executed, thenintersecting the fault sets associated with
the observed error patterns. The following table is derived from the fore-

going table,
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Error Patterns Implied
Fust | Second . Feilie .
EyNE, E,nE, ANBNCND
El“Ez E1"‘Ez ANBNCND
E10E2 ElnEz ANBNCND
E,NE, E\NE, ANBNCND
E,NE, E,NEy ANBNACND
E,NE,y E,NE, ANBNCND
E,NE, E,NE, ANBNCND
E,NE, E,NE, ANBNCAD
E,NE, E,NE, ANBNCND

If an error is detected but the implied fault set is empty, then either
1) the causative fault was not simulated (possibly due to don't knows) or 2) the
fault causes inconsistent errors (definitely not stuck), or 3) the simulation
results are incorrect due to modelling or programming error or host-computer
error when executing DYSOGN.

Where outputs are don't-know Xs, they are ignored. This is equivalent
to {ntevsecting the set of all faults.

The upper hound on the number of uniquely isolated fault sets i8 N.
(-1 + 2 exp N), where N is the number of tests and Ng is the number of
observable outputs .

The algorithm actually used by D4LASAR's REDUCE has not been dis-
closed, but it i8 known that the SMC-3100 host computer is able to execute
AND operations (which correspond to intersection) on vectors of exceptional

length.
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IX. CONCLUDING COMMENTS

P

W e fT ST St e e
ST ST iR TR ... B WL RN

This report is intended as an introduction to the D4ALASAR test-generation i
system, with emphasis on 2 mechanistic background. The report endeavors to {0
show how D4LASAR works, some things D4LASAR-does well or poorly, and b

"
D r—-zt:-s"~'::¢:.':,"-'ﬁv‘?‘“"5""“??$ﬁ?f?-<

S additional features that would be desirable. 1
) The serious user will need to learn the programming details, preferrably 3
m [ via a formal course and then through continued usage. The default values of iR
: options in D4ALASAR have been chosen with sufficient care that much useful
% test generation can be accomplished by a person with a shallow understanding L

of the process. However, things do not always go well, in which case there
is no substitute for understanding.

[ £

There is a great deal to learn about modelling problems, and this report
does not touch on this aspect. Understanding of work-arounds is important,
Test-generation programs use digital computers with their binary processes.
However, many circuits, e.g., edge-triggered flipflops and transmission
gates, incorporate analog processes that must be modelled and, in some way,
adapted to the computer's limitations. STIMGN models may require work-
arounds that are not required by SIMUL and DYSOGN because of the difference
. in time representation, Tri-state bus drivers require awkward work-arounds
| z because the program is not written to accommodate two-way signal flow on a
) ‘; single wire. (This writer has heard of no simulator program with that
capability). If it is desired to simulate a well-designed synchronous machine,
a considerable amount of manual labor is required with D4LASAR to generate ,
the equivalent of a.clock. If a large network is partitioned, to permit -
application of DALASAR to manageable pieces, then there may be considerable |
difficulty in maintaining the timing relations at the partition interfaces. These ;
remarks are made to emphasize the need for study to become proficient in the

application of DALASAR (or other such programs) to wide ranges of real test
problems,

Ak R e Sl AT T

g T o

Two more warning comments are in order, The Complementary Metal
Oxide on Silicon (CMQS) technology applications are growing rapidly due to
the advantageous speed-power product. These gates have "complementary"
logic, which is really dual logic (AND and OR are duals), at their outputs.
D4LASAR and most (perhaps ali) of its competition are designed for T'TL gates
and do not accurately represent CMOS gates. It seems that the fault coverage
for CMOS will be less than its TTL equivalent, but we do not seem to know what
to do about it. Further study is needed for modelling CMOS devices,

et e e i i

Dl e TR

D4LASAR depends on gate models., According to information obtained
from Digitest Corp in March, 1978, the gate limits, as functions of the number
of words of core in the host SMC-3100 computer, are as follows:

S i s meen e n s 1.

i
(‘U
o
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Gate Limits

Words of Core

Module 196,608 | 534,244
STIMGN 5,800 | 20,700
SIMUL 7 750 | 28,000
DYSOGN 4,500 | 14,800

B T T T TP RPN

) e CA L AR L . R
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Some large-scale integrated (LSI) devices, with more than 5,000 NAND-
equivalent gates, already exist, The number of gates on a board may be many
tens of thousands. Hence, some single chips already overwhelm the minimal
D4LASAR system, and there are boards that overwheim the maximal DALASAR
system. The run times can require days when the chip or board barely fits

into the system limits. DAL.ASAR is a finely tuned program so there is littls
hope for large improvements in run time through further tuning. A faster host
computer would help the run time, but the cost would not diminish in proportion
to the speed increase. Increased use of bulk storage would allow much larger
gate counts but with significant run time increases.

Such considerations show that DALASAR and ita competition are close to
being obsolete because the growth of LSI devices continues much faster than
the growth of the test-program capability. The problem stems primarily
from gate-level modelling; there is too much information to be processed.

It will becorne necessary to give up gate models except for use by LSI
chip designers. Reference 7 offers alternative approaches. Loss of the fine
structure of gate models will severely limit our ability to assure high fault
coverage and to account for timing problems. Perhaps the ultimate solution is
to provide self-testing devices using hardware redundancy techniques. As we
approach that goal, there will surely be many attempts to find compromises
between gate-modelled software and fault-tolerant hardware.
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APPENDIX A: EXAMPLE

This example is strictly combinatorial and was run on D4LASAR but not
under ALEC to emphasize the procedures of the main modules of DALASAR.

12-1
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Model Deck

NAME = EXAMPLE
MODEL/

13

Figure 8. Logical Model

7NA/1/ 11//, 8NA/2,3//, 9NA/4,5//, 10NA/11,8//,

11NA/8
INPUT/1,2,3,4, 5,6
OUTPUT/10, 12/

/

9//, 12AN/7,13//, 13NA /10,9//

Component Ordering For Minimum Feedback (by INPUT)

ONA

8NA
1INA
10NA

TNA
12AN
13NA

>R 0D CO D i s

As gate 12 output is a function of gate
13 output, 12 should be last.
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‘ {1
t STIMGN Tests 1
Test Input Values Source Output f

No. 1 2 3 4 5 6 Output 10 12
5 i
1 1 X 0 x 1 1 1 10 0 (X
i 2 X 1 1 0 Xx 1 10 0 (X e
: 3 X X X 1 1 0 10 1 (X) A
i 5 X 1 0 0 1 1 10 1 (1)
v 6 X 0 X 1 0 1 10 1 (X i
,‘ 7 1 X X 1 1 X 12 X) 0 R
31 3 0 X X 0 X 0 12 1) 0 1
9 0 X X 1 1 0 12 1) 1 )
: 10 0 1 1 0 x 1 12 0 1 1
{ |
: n
i Bracketed outputs are not given by STIMGN and were hand calculated. .
1N STIMGN Detected Faults ;

" , Test No. New Detects Per STIMGN {;

| 1 10 SAI, 6SAO, 11 SAO, 9*11, 9 SA1, 4 SAO, 5 SAQ {
2 8*11 , 88A1, 28AO, 38A0 F

3 10 SAO, 6*10, 6 SA1 L

4 11%10, 118A1, 9 SAO, 8 SAO, 4*9, 4 SA1, 2*108, 2 SA1l o

5 | 3%8, 35Al ;

8 5%, 5 SA1 ]

7 12 SA1, 12-1SA0, 7*12-1, 7 8Al, 18A0 ; ﬂ

8 13*12-1, 138A1 o

9 12 SAO, 12-1*12, 12-1 SA1, 78AO0, 13 8AQ, 1*7, 18A1, 9*13 1

: 10 10%13 E

: k|

Undetected (and undetectable) 11*7 1

f' X

r 8*11 designates open line from 8 to 11 (equivalent to 8A1 input). ;;

f 12-1 is first of two NANDS composing the AND labelled 12. !
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Comments On STIMGN Examp!le

Output 10 is selected as tha first source cutput because it ia listed first g
on the OUTPUT control card, ;

The order of input assignments, e.¢. critical ve necessary, on each

. gate I8 determined by the INPUT module in its routine for minimieing feed-
k- back. This example has no feedback but is reordered anyway. Why INPUT ‘ ;
did not list gate 12 as a fifth level is not understood by this writer. A

PY;

Al The first value assigned to any source output s zero. Thus, for the &
B i first test, gate-10 output is rero which requires a (critical) all-ones input. -
o Extaraal input 6 and gate-11 outputs must be ones, so gate 11 must have a 5
§o single-gero input. Gate 9 is ordered ahead of gate 8, so gate~9 output is
B back-driven to a critical zero and gate-8 output to a necessary one. Then )
R external inputs 4 and 5 muat both be (crltlcn.lz ones. External input 2 becomes A

SN & necessaxy zero while input 3 remains "X" (designuting a don't care in this "
» T case). Incldentally, gete 10 forces a zero input to gate 13, and gate 11 forces gl
" 2 one Inpui to gute 7, but these fanouts do not reconverge 8¢ there is no ;
posaibility for a logical contradiction. '

it e i G L o

A minor question of STIMGN procedure acises. Mi.Bruce Pomeroy of R
Digitest Corp, has stated that STIMGN does not pursue parallel critical s
paths, i.e., it does not consider all upstream branchings from gates with T
wll-me input, but that STIMGN does have some look-ahead capability. In the »
x| examplo of test one above, STIMGN does find il of the poszible detectable '

L | faults including those of gates 8, 8, 11, Without the undefined look-ahead
; leature, STIMGN would Jdesignate externa) input 6 as a critical 1 and gate-11 .
output as a necessary one. In zuch an analysis, the external test vector would
be XXX111 (don't-care gate 8) and none of the faults of gatcs 8, 9, or 11 would
' be detected by test vne. This exemplary, model is too simple to determine the
' number of levels of lookahead.

PRI SR S

Tests which do not result in new detects witll not be liasted. This is
demonstrated by detalled analysis of test 9 and 10. Test 9 begins with source
12 output changed to one. 'Then gates 7, 10, and 13 would be toggled in turn,
However, toggling 7 and 10 produces no new detect and, therefore, no test )
is listed. Test 10 derives {rom toggling gate 13. )

The STIMGN control ordering, which resulted in the specified sequence of
of ten tests are: 1) source 10 set to zero, 2) toggle gate 11, 3) source 10 set , ;
to 1, 4) toggle gate 10, 5) toggle gate B, 8) toggle gate 9, T) source 12 set to
zero, 8) toggle gate 12, 9) source 12 set to one, 10) toggle gate 13,

STIMGN execution time was eight seconds. |
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OVRLAY Patterns
STIMGN OVRLAY WITH ACTUAL
TESTS TEST NO. DON'T CARES PATTERNS
1, 1 1 "1 0X111 ] 101111
3 10 2 011 0X1 011011
3, 9 3 0XXi110 j]O0O1110
4 T N 1 X010 1+ 0601011 .
-5 5 'X10011] 010011
6 '8 X0XxXx101 | 000101
8 7 0XX0X0 0000O0CQO

All don't cares remaining after overlaying are assigned so as to minimize
the uumber of changes. The X of test 1 is %t to the one of test 2. The X
of test 2 is sec to the one of teat 3. ' As it happens, the first X of test Sils
the only one preceded by one and followed by zero, and it is set to the latter,
The X8 of test 8 awre set to the preceding values.

OVRLAY execution time was four seconds.

SIMUL

There is no latch in the example, hence there can be no race nor hazard,
Thus, no bufier pattern was added, and no node has a don't-know value for any
test. Unlike STIMGN, SIMUL calculates all (two) output values for each test.

SIMUL execution time was seven seconds.
DYSOGN

Test 1 (OVRLAY: 101111) will be used as an example of fault-list
simulation. Remermber that gate ordering is 9, 8, 11, 10, 7, 13, 132,
Corresponding gate output values are 0, 1, 1, 0, 0, 1, 0. The following
fault liste were manualiy calculated and are believed to be the same as
DYSOGN's output. No DYSOGN ostion is available to permit checking this.

DYSOGN execution time was five seconds.
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Fault Lists
Fo

F4 U F5U0g, |
F2 U (2%8)Y BgA0
{[routom1n)] o w8 junsg, .
= FAUFBUOG, ,U(eM)U1Lg, o
FI0 =  FeUF11U10g,,
= FAUFSUFBUS, U (0*11) Ullg, 1U10g, ,
F1 = FIUFUUT,, |
= FIUF4UFSU 94, U (ev11) U1z, U TaAd
{[reu(e*xs)] n [Fiou(10%13)] } U1sg, .
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The fault list detected by test 1 under single-fault assumption is that provided
by DYSOGN:
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APPENDIX B. CRITICAL PATHS WITH RECONVERGENT FANOUT

I there were no.reconvergent fanout, STIMGN's back-driven critical
paths would have a much easier task. Reconvergent fanout allows one node to
drive another through two or more parallel intermediate paths., When dis-
cussing pulse generation, the delays of these paths are important. However,
her:agteuys are of no concem, but the parity (odd or ever gate count) is im-
portant.

ASSUME CRITICAL
OUTPUT

FANOUT POINT RECONVERGENCE

Figure 8. Reconvergent Fanout

[f the parities of both branches are different, then the inputs to G will be
complementary. The zero-valued path will be "critical" while the other path is
"necessary". That is, errors in the critical path will be detected but not in the
necessary path, Upstream of the fanout point there can be no criticality through
gate G bacause the effect of such upstream faults would change both complementary
inputs to G leaving its output unchanged.

If the parities of both branches are the same, then the inputs to G are
either both one or both zero. If both are one, all of the gates are critical, which
is not remarkable, However, if both inputs to G are zero, then no fault in the
parallel paths can be detected because the other unfaulted path would hold the G
output value at one, All gates upstream of the fanout point are critical because
they would cause both of the inputs to G to change from 0,0 to 1,1 with a detec-
table change in the output of G.
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